
VERA Installation Guide

Author: Roscoe A. Bartlett (bartlettra@ornl.gov)
Author: Mark Baird (bairdml@ornl.gov)
Author: Joel A. Kulesza (kuleszj@westinghouse.com)

Contents

1 Introduction 1

2 Standard VERA Dev Env Directory Structure 1

3 Initial Setup 3

3.1 Requesting Access to VERA Repositories 3
3.2 System Configuration Considerations 3
3.3 SSH Setup For Accessing casl-dev 4
3.4 Minimal System Package Setup 4
3.5 Create Unix Groups . 5
3.6 Local Directory Structure . 5
3.7 Skeleton Directory Setup . 5
3.8 Clone Minimal Bootstrap Repositories 6

4 Install Standard Basic VERA Dev Env 7

4.1 Standard Dev Env Script . 7
4.2 Install eg, egdist And Perform git Setup 8
4.3 Install CMake From Source . 9
4.4 Install git From Source . 9
4.5 Install GCC From Source . 10
4.6 Install OpenMPI From Source . 10
4.7 Summary of VERA Dev Env Setup 11

5 Install Standard VERA TPLs 11

5.1 Set Up Base TPL Directory And Basic Variables 11
5.2 Install TPLs One At A Time . 12

5.2.1 Install LAPACK . 12
5.2.2 Install Boost . 12
5.2.3 Install Zlib . 12
5.2.4 Install MOAB . 12
5.2.5 Install HDF5 . 13
5.2.6 Install Hypre . 13
5.2.7 Install PETSC . 13
5.2.8 Install SILO . 14

1

mailto:bartlettra@ornl.gov
mailto:bairdml@ornl.gov
mailto:kuleszj@westinghouse.com

5.2.9 Install QT . 14
5.3 Install TPLs All At Once . 14

6 VERA Component Build, Test, and Installation 15

6.1 Load VERA Dev Env . 15
6.2 Clone Remaining VERA Components 15
6.3 Checking Out a Specific Version of VERA 16
6.4 Set Up Build Directory . 18
6.5 Set Up do-configure Script . 19
6.6 Run Basic Build And Test . 19

7 Finalizing VERA Dev Env Installation 20

8 Installing VERA 21

8.1 Get Source For VERA Components To Install 21
8.2 Configure, Build, And Test VERA Components To Install 22
8.3 Install Built VERA Components 23
8.4 Documentation For Installed VERA Components 23

9 Appendix 23

9.1 Set Up Remote SSH Tunnel . 23

1 Introduction

This guide describes the structure and setup of the standard VERA development
environment (VERA Dev Env) and standard Third Party Libraries (TPLs) that
need to be in place before installing many of the VERA simulation components.
It describes everything from the initial setup on a new machine to the final
builds and testing of VERA components. The goal of this document is to
describe how to create the directories and contents outlined in Standard VERA
Dev Env Directory Structure, which once finished, allows one to clone the VERA
git source repositories and build any of the necessary VERA components on a
given system.

WARNING: This guide only describes the installation of the VERA Dev
Env and TPLs and does not contain specific information about specific VERA
simulation components. That information is found in other sources. Please
consult with a CASL representative about what VERA components are available
to install from source and what capabilities they provide. Mention of other
VERA repositories in only used as examples and may not even be up to date.

2 Standard VERA Dev Env Directory Structure

The standard directory structure for the installation of the VERA Development
Environment (VERA Dev Env) is given below:

${VERA_DEV_ENV_BASE}/

common_tools/

autoconf-2.69/

cmake-2.8.5/

2

git-1.7.0.4/

eg

egidst

gcc-4.6.1/

toolset/

gcc-4.6.1/

openmpi-1.4.3/

tpls/

opt/

common/

lapack-3.3.1/

boost-1.49.0/

zlib-1.2.5-patched/

moab-4.5.0/

hypre-2.8.0b/

petsc-3.3-p4/

vera_cs/

hdf5-1.8.7/

silo-4.8/

qt-4.8.2/

...

dbg/

common/

vera_cs/

...

dbg-checkedstl/

common/

vera_cs/

...

...

intel-13.x/

toolset/

openmpi-1.4.3/

tpls/

opt/

common/

vera_cs/

(WARNING: The exact list of TPLs and versions are defined in the file
VERA/cmake/std/vera-tpls-std.cmake. The primary purpose of the above list
is to describe the standard format, not be the definitive definition per say.)

For the example in this guide, we will set:

VERA_DEV_ENV_BASE=/tools/vera

but note that any base directory can be used. This directory is where the
prerequisite TPLs and VERA tools are deployed for use by end users.

For the standard GCC 4.6.1 VERA Dev Env, we set:

VERA_DEV_ENV_COMPILER_BASE=${VERA_DEV_ENV_BASE}/gcc-4.6.1

For other supported compilers (e.g. intel-13.x), other directories can be
used. This directory structure keeps the compatible tools and TPLs together

3

to maintain consistency (i.e., so we don’t mix TPL builds of one compiler with
TPL builds for another compiler which can otherwise cause problems in some
cases).

For a given compiler set, TPLs can be installed for different configurations,
such as debug (dbg), optimized (opt), or other variations (e.g. dbg-checkedstl).
The standard TPL install, and the one used in this guide as an example, is:

TPL_INSTALL_DIR=${VERA_DEV_ENV_COMPILER_BASE}/tpls/opt

All of the VERA Dev Env and TPL related scripts, etc. will use the variables:

• VERA_DEV_ENV_BASE

• VERA_DEV_ENV_COMPILER_BASE

• TPL_INSTALL_DIR

to determine a particular installation of the VERA Dev Env to use for build-
ing/testing/installing VERA components.

3 Initial Setup

Before any of the VERA-specific prerequisites can be installed, a some initial
setup is required. This section describes some of the tasks that need to be
performed in order to set up a machine so that it can be used to install the
VERA Dev Env and then clone the VERA repositories and build the various
VERA components from source.

3.1 Requesting Access to VERA Repositories

Before one can access the various VERA git repositories on casl-dev.ornl.gov,
one must first be given an ORNL UCAMS account, given an account on casl-dev,
and be given explicit access to the different git repositories (in accordance to
the CASL Technology Control Plan (TCP)). Contact your CASL representative
to get started getting getting this access setup. Please provide them with a list
of the specific VERA git repositories that one needs access to.

3.2 System Configuration Considerations

Before work can begin, an accounting of the system resources should be made.
For example:

• How many processors are available for parallel compilation?

• What is the fastest storage system to use for holding source code, compil-
ing, and running test cases?

• Avoid NFS-mounted directories for compilation and testing.

Meanwhile, other considerations include:

• Can the machine create SSH tunnels to download VERA and TPL repos-
itories?

4

• Can the machine access the Internet? If not, ensure that all packages
needed are available in the VERA and/or TPL repositories.

• Can remote users access the machine if troubleshooting assistance is needed?

3.3 SSH Setup For Accessing casl-dev

In order to access the VERA repositories on casl-dev.ornl.gov, one must set
up public/private SSH keys and then the public SSH must be registered with
the gitolite system that is used to manage the VERA git repositories. In this
guide, we use <ucams-id> to signify the user’s 3-char ORNL UCAMS ID.

If the machine casl-dev (casl-dev.ornl.gov) is not directly reachable
from your machine (referred to as <your-machine> is this document), you will
first need to set up a remote SSH tunnel to casl-dev as described in Set Up
Remote SSH Tunnel.

First, on the given machine, one sets up public/private SSH keys (if not
already existing) as:

$ cd ~/.ssh && /usr/bin/ssh-keygen -t rsa -b 1024

Several prompts will appear. The defaults should be accepted with three
strikes of the <ENTER> key.

The public key just created, ~/.ssh/id_rsa.pub, must then be sent to casl-
vri-infrastructure@casl.gov in order to be registered with your account in the
gitolite system on casl-dev.

After one’s public SSH key has been registered with gitolite on casl-dev,
one can test to see if one has access by performing:

$ ssh git@casl-dev info

This command should return the list of git repositories that one has access
to. At the very minimum, this should return:

$ ssh git@casl-dev info

hello <userid>, this is git@casl-dev running ...

...

R Trilinos

...

Access to other repositories requires being explicitly added to the appreciate
gitolite permission groups.

If this command does not work without a password challenge, then something
is wrong and no repositories will be able to be cloned.

3.4 Minimal System Package Setup

Before proceeding to start installing the various VERA prerequisites, the fol-
lowing software packages must be installed on the system:

• GCC compilers (does not have to be the most recent version): Needed to
build the official version of GCC built from source

5

mailto:casl-vri-infrastructure@casl.gov
mailto:casl-vri-infrastructure@casl.gov

• Git: Needed to clone several git repositories

• X11 (development libraries, not just the runtime libraries): Needed to
build and install the required VERA TPL QT

• Perl (version v5.10.1 is what VERA is tested with but newer should work
as well): Needed for building libmesh/MOOSE/Peregrine and to run the
react2xml.pl perl parser.

There are many other software packages that one needs but the rest should
already by installed on any reasonable Linux/Unix system.

3.5 Create Unix Groups

In order to properly protect VERA installs, it is recommended to set up the
following groups on the build and installation machines:

• vera-admin: List of Unix users that are charged with maintaining the
installs of VERA

• vera-users: List of Unix users that have access permission and need-to-
know for running the VERA components.

NOTE: The list of users added to vera-users must have been given ex-
plicit permission to access all of the installed VERA components. If one is
not sure who can be in this list, please contact casl-vera-users@casl.gov or casl-
vri-infrastructure@casl.gov or some other responsible CASL representative for
guidance.

3.6 Local Directory Structure

The installation of the VERA development environment requires setting up some
local directories, including scratch space, and then cloning some git repositories.
In this guide, we will assume the following local directory structure:

<SOME-BASE-DIR>/

VERA.base/ # VERA repos and local builds

VERA/ # Base VERA git repos

BUILDS/ # Base builds directory

GCC-4.6.1/ # Standard GCC 4.6.1 builds

MPI_DEBUG/

do-configure

scratch/ # Contains temp build files, log files, etc.

vera_tpls/ # VERA TPLs and install scripts

For example, <SOME-BASE-DIR> could just be the home directory ~/ for the
person who is doing the install of the VERA Dev Env.

If the VERA source

3.7 Skeleton Directory Setup

In order to create the skeleton for the base directory setup, first, one must create
a local scratch directory:

6

mailto:casl-vera-users@casl.gov
mailto:casl-vri-infrastructure@casl.gov
mailto:casl-vri-infrastructure@casl.gov

$ mkdir <SOME-BASE-DIR>/scratch

Then, one must create the skeleton for the base VERA Dev Env install
directory $VERA_DEV_ENV_BASE. For example, one could use:

/tools/vera

To set up /tools/vera, for example, (owned by group <some-group>, e.g.
vera-admin) one would do:

$ sudo mkdir /tools

$ sudo chmod 775 /tools

$ sudo chgrp vera-admin /tools

$ sudo chmod g+s /tools

Now that /tools is owned by the <some-group> group (e.g. vera-admin),
anyone in that group can maintain these files, reinstall, etc. without needing
sudo on the system. Note that if one’s umask is set to 0022 when installing
the tools (the default on many Linux systems), then as files and directories are
installed under /tools/vera, the the permissions will be set correctly for usage
by anyone on the system. NOTE: There are no sensitive or export controlled
files or data that get installed under $VERA_DEV_ENV_BASE/ described in this
document. If sensitive files get installed, they will need to be protected with an
appropriate Unix group.

The rest of the skeleton of the directory structure for the VERA Dev Env
$VERA_DEV_ENV_BASE is done with:

$ mkdir /tools/vera

$ mkdir /tools/vera/common_tools

$ mkdir /tools/vera/gcc-4.6.1

All of the other directories should be created automatically during the vari-
ous installs processes as described below.

3.8 Clone Minimal Bootstrap Repositories

Before the basic VERA Dev Env can be built and installed, a few of the VERA
git repos must be coloned (if building from the version controlled source) and
the source and install scripts for the official VERA TPLs vera_tpls must be
obtained.

When cloning the VERA git repos, consistent with the directory structure
in Local directory structure, one first performs:

$ cd <SOME-BASE-DIR>

$ mkdir VERA.base

$ chgrp vera-admin VERA.base

$ chmod 750 VERA.base

$ chmod g+s VERA.base

$ cd VERA.base/

$ git clone git@casl-dev:/VERA

$ cd VERA/

$ git clone git@casl-dev:/Trilinos

7

When the sources are obtained from a (release) tarball of VERA, one must
just untar the single tarball vera-X.Y-Source.tar.gz (where X.Y = 3.2, 3.3,or
3.4 for example) as:

$ cd <SOME-BASE-DIR>

$ mkdir VERA.base

$ cd VERA.base/

$ tar -xzf ~/vera-X.Y-Source.tar.gz

$ ln -s vera-X.Y-Source VERA

By creating the symbolic link VERA for the untarred sources, the rest of the
instructions remain the same as for the cloned git repos. However, one can
choose to not create the symbolic link and just explicilty use vera-X.Y-Source
instead of VERA in these instructions but other adjustments may be needed as
well.

The various open-source third party libraries are stored in a few git re-
pos that are have clones under both git@casl-dev:/prerequisites and on
github.com/CASL. Only those with UCAMS accounts can access the casl-dev
repos using an SSH tunnell but anyone can access the github.com/CASL re-
pos if their system allows https downloads from github.com (and some systems
don’t). When refering to these open-source git repos, this document will assume
the following variable is set in the shell env:

VERA_PREREQUISITES_GIT_URL_BASE

to either:

VERA_PREREQUISITES_GIT_URL_BASE=git@casl-dev:/prerequisites

or:

VERA_PREREQUISITES_GIT_URL_BASE=https://github.com/CASL

Now that the discussion of the different locations for the open-source git
repos is out of the way, one must clone the vera_tpls git repo containing the
source code and install scripts for all of the official VERA open-source TPLs:

$ cd <SOME-BASE-DIR>

$ git clone $VERA_PREREQUISITES_GIT_URL_BASE/vera_tpls

With this, one should have access to all the scripts and source code need to
get started installing the VERA Dev Env as well as the TPLs. A few other git
repos will be cloned for GCC, OpenMPI, etc. as part of the following process.

4 Install Standard Basic VERA Dev Env

In this section, the installation of the standard basic VERA Dev Env is described
which includes the GCC compilers, OpenMPI, CMake, and some supporting
scripts (but not the TPLs yet). This includes everything shown in Standard
VERA Dev Env Directory Structure except the tpl subdirectory.

8

4.1 Standard Dev Env Script

Before starting the install of the basic VERA Dev Env tools, one should set
up and source a standard load_dev_env.sh script. A standard script for the
standard VERA Dev Env looks like:

Set the base dir to anything you want but default is given

if ["$VERA_DEV_ENV_BASE" == ""] ; then

export VERA_DEV_ENV_BASE=/projects/vera

fi

A) Common tools independent of the compiler

export PATH=${VERA_DEV_ENV_BASE}/common_tools:$PATH

export PATH=${VERA_DEV_ENV_BASE}/common_tools/cmake-2.8.5/bin:$PATH

export PATH=${VERA_DEV_ENV_BASE}/common_tools/git-1.7.0.4/bin:$PATH

B)The GCC-4.6.1 compiler stack

export VERA_DEV_ENV_COMPILER_BASE=$VERA_DEV_ENV_BASE/gcc-4.6.1

B.1) GCC 4.6.1

export VERA_GCC_DIR=${VERA_DEV_ENV_COMPILER_BASE}/toolset/gcc-4.6.1

export PATH=${VERA_GCC_DIR}/bin:$PATH

export LD_LIBRARY_PATH=${VERA_GCC_DIR}/lib64:$LD_LIBRARY_PATH

B.2) OpenMPI 1.4.3

export VERA_OPENMPI_DIR=${VERA_DEV_ENV_COMPILER_BASE}/toolset/openmpi-1.4.3

export PATH=${VERA_OPENMPI_DIR}/bin:$PATH

export LD_LIBRARY_PATH=${VERA_OPENMPI_DIR}/lib:$LD_LIBRARY_PATH

For the standard VERA Dev Env, a standard load_dev_env.sh is found at:

<SOME-BASE-DIR>/VERA.base/VERA/cmake/std/gcc-4.6.1/load_dev_env.sh

To use this standard load_dev_env.sh script, one just needs to set, for
example:

$ export VERA_DEV_ENV_BASE=/tools/vera

and then do:

$. <SOME-BASE-DIR>/VERA.base/VERA/cmake/std/gcc-4.6.1/load_dev_env.sh

With these paths set, as tools are installed, they will automatically show up
and be used!

To make this happen automatically, one could add the lines:

export VERA_DEV_ENV_BASE=/tools/vera # Or whatever it is on the system

. <SOME-BASE-DIR>/VERA.base/VERA/cmake/std/gcc-4.6.1/load_dev_env.sh

to the end of their .bash_profile file so the VERA Dev Env will be set on
login.

NOTE: The remaining instructions assume that the above load_dev_env.sh
script has been sourced before installing any of the VERA prerequisites.

9

4.2 Install eg, egdist And Perform git Setup

To install eg and git, do:

$ cd <SOME-BASE-DIR>/VERA.base/VERA/Trilinos/cmake/tribits/common_tools/git/

$ cp eg egdist ${VERA_DEV_ENV_BASE}/common_tools/

$ which eg

.../common_tools/eg

$ which egdist

.../common_tools/egdist

$ eg --version

eg version 1.7.0.4

git version xxxxxx

(where .../ above is meant to signify the actual directory base path).
If one will be making commits or using git for anything interesting, they

should set up their ~/.gitconfig file. An example of how to do this, for Trilinos
developer bartlettra, is:

$ <SOME-BASE-DIR>/VERA.base/VERA/Trilinos

./sampleScripts/git-profiles/git-config-bartlettra.sh

(NOTE: the above script requires eg). One can just copy the file git-config-bartlettra.sh
as a template and modify it for one’s own use.

4.3 Install CMake From Source

To install an optimized version of CMake from source do:

$ cd <SOME-BASE-DIR>/scratch

$ env CXXFLAGS=-O3 CFLAGS=-O3 \

<SOME-BASE-DIR>/VERA.base/VERA/Trilinos/cmake/tribits/python/install-cmake.py \

--checkout-cmnd="git clone $VERA_PREREQUISITES_GIT_URL_BASE/cmake.BASE" \

--parallel=8 \

--install-dir=${VERA_DEV_ENV_BASE}/common_tools/cmake-2.8.5 \

--do-all \

&> install-cmake.log

After this, cmake should up automatically be in the path (see Standard Dev
Env Script) as seen by:

$ which cmake

.../common_tools/cmake-2.8.5/bin/cmake

4.4 Install git From Source

While one needs some version of git to clone the initial VERA repositories,
it is best to install the official version of git so as to ensure that the various
git-related code in TriBITS will work correctly.

To install Git from source do:

10

$ cd <SOME-BASE-DIR>/scratch

$ <SOME-BASE-DIR>/VERA.base/VERA/Trilinos/cmake/tribits/python/install-git.py \

--checkout-cmnd="git clone $VERA_PREREQUISITES_GIT_URL_BASE/git.BASE" \

--make-options=-j8 \

--install-dir=${VERA_DEV_ENV_BASE}/common_tools/git-1.7.0.4 \

--do-all \

&> install-git.log

After this, this version of git should automatically be in the path (see
Standard Dev Env Script) as seen by:

$ which git

.../common_tools/git-1.7.0.4/bin/cmake

$ eg --version

eg version 1.7.0.4

git version 1.7.0.4

4.5 Install GCC From Source

To install GCC 4.6.1 from source, do:

$ cd <SOME-BASE-DIR>/scratch

$ <SOME-BASE-DIR>/VERA.base/VERA/Trilinos/cmake/tribits/python/install-gcc.py \

--checkout-cmnd="git clone $VERA_PREREQUISITES_GIT_URL_BASE/gcc.BASE" \

--install-dir=${VERA_DEV_ENV_COMPILER_BASE}/toolset/gcc-4.6.1 \

--make-options=-j8 \

--do-all \

&> install-gcc.log

Once the install-gcc.py script finishes (without error), the new GCC
should automatically show up (see Standard Dev Env Script) as seen by:

$ which gcc

.../gcc-4.6.1/toolset/gcc-4.6.1/bin/gcc

$ gcc --version

gcc (GCC) 4.6.1

...

4.6 Install OpenMPI From Source

To install OpenMPI 1.4.3 from source do:

$ cd <SOME-BASE-DIR>/scratch

$ <SOME-BASE-DIR>/VERA.base/VERA/Trilinos/cmake/tribits/python/install-openmpi.py \

--checkout-cmnd="git clone $VERA_PREREQUISITES_GIT_URL_BASE/openmpi.BASE" \

--make-options=-j8 \

--install-dir=${VERA_DEV_ENV_COMPILER_BASE}/toolset/openmpi-1.4.3 \

11

--do-all \

&> install-openmpi.log

(NOTE: This will use the GCC 4.6.1 compiler just installed above. This is
critical!)

Once the install-openmpi.py script finishes (without error), the new Open-
MPI executables should automatically show up (see Standard Dev Env Script)
as seen by:

$ which mpicc

.../gcc-4.6.1/toolset/openmpi-1.4.3/bin/mpicc

4.7 Summary of VERA Dev Env Setup

After the above installation steps are complete, one should log off then log back
in (sourcing .bash_profile which will source the load_dev_env.sh script)
where then one should see:

$ which eg

.../common_tools/eg

$ which egdist

.../common_tools/egdist

$ which git

.../common_tools/git-1.7.0.4/bin/cmake

$ which cmake

.../common_tools/cmake-2.8.5/bin/cmake

$ which gcc

.../gcc-4.6.1/toolset/gcc-4.6.1/bin/gcc

$ which mpicc

.../gcc-4.6.1/toolset/openmpi-1.4.3/bin/mpicc

which confirms that the basic VERA Dev Env (minus the TPLs) is fully set
up and ready to install TPLs.

5 Install Standard VERA TPLs

After finishing Install Standard Basic VERA Dev Env, one is ready to start
building and installing the standard VERA TPLs from source.

WARNING: It is critical that the TPLs be built using the compilers and
MPI implementation installed in Install Standard Basic VERA Dev Env and
that will also be used to build the VERA components.

5.1 Set Up Base TPL Directory And Basic Variables

Before installing VERA TPLs using the scripts in the cloned vera_tpls repo,
one needs to set up a few variables that are used in the TPL install scripts. For
a standard install of VERA, for example, one would set:

export TPL_INSTALL_DIR=${VERA_DEV_ENV_BASE}/gcc-4.6.1/tpls/opt

export MAKE_FLAGS=-j8

export METHOD=opt

12

NOTE: One could install a ’dbg’ version of the libs as well by setting
METHOD=dbg.

5.2 Install TPLs One At A Time

In this section, the installation of the individual TPLs one at a time is described.
This mode is to be preferred if one wants to carefully validate the correct install
and inspect the results along the way.

NOTE: When building individual TPLs, be mindful of the TPL dependencies
as the TPLs must be built in the right order. To see what these dependencies
are, just inspect the scripts. Also note that the size of the tpl sub-directories
will vary slightly.:

<SOME-BASE-DIR>/vera_tpls/scripts/std/*.sh

5.2.1 Install LAPACK

cd <SOME-BASE-DIR>/scratch

env BUILD_LAPACK=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> lapack.log

ls ${TPL_INSTALL_DIR}/common/lapack-3.3.1/lib/

libblas.a liblapack.a libtmglib.a

5.2.2 Install Boost

cd <SOME-BASE-DIR>/scratch

env BUILD_BOOST=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> boost.log

du -sh ${TPL_INSTALL_DIR}/common/boost-1.49.0/*

103M .../common/boost-1.49.0/include

34M .../common/boost-1.49.0/lib

5.2.3 Install Zlib

env BUILD_ZLIB=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> zlib.log

du -sh ${TPL_INSTALL_DIR}/common/zlib-1.2.5-patched/*

96K .../common/zlib-1.2.5-patched/include

156K .../common/zlib-1.2.5-patched/lib

8.0K .../common/zlib-1.2.5-patched/share

5.2.4 Install MOAB

env BUILD_MOAB=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

13

&> moab.log

du -sh ${TPL_INSTALL_DIR}/common/moab-4.5.0/*

476K .../common/moab-4.5.0/bin

968K .../common/moab-4.5.0/include

6.5M .../common/moab-4.5.0/lib

856K .../common/moab-4.5.0/share

5.2.5 Install HDF5

env BUILD_HDF5=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> hdf5.log

du -sh ${TPL_INSTALL_DIR}/vera_cs/hdf5-1.8.7/*

1.5M .../vera_cs/hdf5-1.8.7/bin

8.1M .../vera_cs/hdf5-1.8.7/include

11M .../vera_cs/hdf5-1.8.7/lib

1.2M .../vera_cs/hdf5-1.8.7/share

5.2.6 Install Hypre

env BUILD_HYPRE=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> hypre.log

du -sh ${TPL_INSTALL_DIR}/common/hypre-2.8.0b/*

1.3M .../common/hypre-2.8.0b/include

16M .../common/hypre-2.8.0b/lib

5.2.7 Install PETSC

env BUILD_PETSC=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> petsc.log

du -sh ${TPL_INSTALL_DIR}/common/petsc-3.3-p4/*

3.6M .../common/petsc-3.3-p4/bin

3.3M .../common/petsc-3.3-p4/conf

33M .../common/petsc-3.3-p4/include

17M .../common/petsc-3.3-p4/lib

220K .../common/petsc-3.3-p4/share

NOTE: To reinstall PETSC, one must first delete (or move) the existing
PETSC install using:

rm -rf ${TPL_INSTALL_DIR}/common/petsc-3.3-p4

The PETSC install target will not copy over an existing PETSC install.

14

5.2.8 Install SILO

env BUILD_SILO=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> silo.log

du -sh ${TPL_INSTALL_DIR}/vera_cs/silo-4.8/*

2.1M .../vera_cs/silo-4.8/bin

164K .../vera_cs/silo-4.8/include

2.0M .../vera_cs/silo-4.8/lib

5.2.9 Install QT

env BUILD_QT=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> qt.log

du -sh ${TPL_INSTALL_DIR}/vera_cs/qt-4.8.2/*

230M .../vera_cs/qt-4.8.2/bin

345M .../vera_cs/qt-4.8.2/demos

549M .../vera_cs/qt-4.8.2/doc

3.6G .../vera_cs/qt-4.8.2/examples

448K .../vera_cs/qt-4.8.2/imports

17M .../vera_cs/qt-4.8.2/include

106M .../vera_cs/qt-4.8.2/lib

5.1M .../vera_cs/qt-4.8.2/mkspecs

320K .../vera_cs/qt-4.8.2/phrasebooks

4.0M .../vera_cs/qt-4.8.2/plugins

328K .../vera_cs/qt-4.8.2/q3porting.xml

7.2M .../vera_cs/qt-4.8.2/translations

5.3 Install TPLs All At Once

The standard VERA TPLs can be installed all at once by doing:

$ cd <SOME-BASE-DIR>/scratch

$ env BUILD_ALL=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> all.log

or in groups of TPLs as:

$ cd <SOME-BASE-DIR>/scratch

$ env BUILD_LAPACK=1 BUILD_BOOST=1 ... BUILD_PETSC=1 \

<SOME-BASE-DIR>/vera_tpls/scripts/std/install_tpls.sh \

&> some.log

WARNING: When installing multiple TPLs at the same time, if a TPL
install fails, the script should stop but one will have to carefully look at the
output to see what TPL install failed and then to address the issue for that
TPL before installing the other TPLs, in the right order.

15

6 VERA Component Build, Test, and Installation

Once the VERA prerequisites (i.e., compilers, TPLs, other tools) have been
installed, if working form the version-controlled source, one needs to clone the
remaining VERA git repositories for the desired components, set up a build con-
figuration, build, test, and finally install. If working from an untarred (release)
tarball, no extra git clones are needed. All of the required soruce will already
be in place.

6.1 Load VERA Dev Env

Before one can configure, build, test, and install any VERA component soft-
ware, the installed VERA Dev Env must first be loaded into the users shell.
If the VERA Dev Env was loaded in the current shell as part of installing the
VERA Dev Env as described in Standard Dev Env Script, then the environment
should already be loaded. Otherwise, if the VERA Dev Env installation was
already finalized, as described in Finalizing VERA Dev Env Installation, then
the load_dev_env.sh script has already been installed and one just needs to
source it, for example, as:

. /tools/vera/gcc-4.6.1/load_dev_env.sh

(or whatever base VERA_DEV_ENV_BASE directory was used for the
install).

IMPORTANT: One should check that the correct VERA Dev Env is
loaded as described in Summary of VERA Dev Env Setup to make sure the
right tools are in the default path.

6.2 Clone Remaining VERA Components

If working from the version-controlled soruces, the remaining VERA git repos-
itories can be cloned, for example, as:

cd <SOME-BASE-DIR>/VERA.base/VERA

git clone git@casl-dev:/Dakota Trilinos/packages/TriKota/Dakota

git clone git@casl-dev:/TeuchosWrappersExt

git clone git@casl-dev:/VERAInExt

git clone git@casl-dev:/DataTransferKit

git clone git@casl-dev:/COBRA-TF

git clone git@casl-dev:/SCALE

git clone git@casl-dev:/Exnihilo SCALE/Exnihilo

git clone git@casl-dev:/MPACT

git clone git@casl-dev:/LIMEExt

git clone git@casl-dev:/PSSDriversExt

To see the exact repo names and the repo URLs, see:

VERA/cmake/ExtraRepositoriesList.cmake

NOTE: The exact list of repositories that one needs to clone greatly depends
on what VERA components with what functionality one desires or needs from
VERA. Such information is not provided in this document.

NOTE: One must be part of the gitolite group that protects a repository or
when one clones one will get an error message like:

16

$ git clone git@casl-dev:MPACT

Initialized empty Git repository in <some-base-dir>/MPACT/.git/

FATAL: R any MPACT <userid> DENIED by fallthru

(or you mis-spelled the reponame)

fatal: The remote end hung up unexpectedly

where <some-base-dir> and <userid> are replaced with the local base di-
rectory and the gitolite user account name on casl-dev. To see if one has
misspelled the repo or if one just does not have permission, one should run:

ssh git@casl-dev info

If the git repository that one is trying to clone is not listed in the output
from this command, then one don’t have permissions to clone the given git
repository.

After cloning the git repositories, a .egdist file should be created to facili-
tate updating the VERA sources for future installs. For the above set of VERA
git repos, this would be done by creating the .egdist file:

$ cd <SOME-BASE-DIR>/VERA.base/VERA

$ cat .egdist

Trilinos/packages/TriKota/Dakota

TeuchosWrappersExt

VERAInExt

DataTransferKit

COBRA-TF

SCALE

SCALE/Exnihilo

MPACT

LIMEExt

PSSDriversExt

See egdist --help for more details. (Note that egidst should have been
installed as described in Install eg, egdist And Perform git Setup).

6.3 Checking Out a Specific Version of VERA

The most recent version of VERA can be pulled just using:

$ cd <SOME-BASE-DIR>/VERA.base/VERA

$ egdist pull

This will pull the most recent version of VERA (at that moment) from the
official development casl-dev/master branches. While a rigorous almost con-
tinuous integration process ensures that all of the basic automated tests pass
before anything is pushed into the casl-dev/master branches, mistakes do occur
and there may be some more detailed acceptance tests that may not run suc-
cessfully on any particular version of VERA at any moment in casl-dev/master.
To reduce the probability of the customer pulling a defective version of VERA
components for their usage, it is recommended that more specific versions of
VERA be pulled that have undergone more testing (both more expensive auto-
mated acceptance tests run nightly and weekly as well as some larger manually
run tests in some cases). This is accomplished using the egdist tool and a

17

VERARepoVersion.txt file. A VERARepoVersion.txt file is created whenever
VERA is configured from local git repositories and that file is written to the
VERA build tree and it gets installed in the base install tree. Every automated
build (which includes the tests) posted to the VERA CDash server includes the
information in a VERARepoVersion.txt file. For a subset of VERA repos, a
VERARepoVersion.txt file looks like:

*** Base Git Repo: VERA

f773368 [Wed Sep 25 10:52:06 2013 -0400] <briadam@sandia.gov>

Final cleanup of Dakota sync script for now.

** Git Repo: Trilinos

209ac0f [Wed Sep 25 12:36:06 2013 -0400] <bartlettra@ornl.gov>

Added add support for --dist-version-file with unit tests (VRI Kanban #3006)

** Git Repo: TeuchosWrappersExt

4b18529 [Fri Aug 30 09:55:07 2013 -0400] <bartlettra@ornl.gov>

Added read and broadcast of PL from XML file (VRI Kanban #3062)

** Git Repo: Trilinos/packages/TriKota/Dakota

0b8d9ca [Thu Aug 8 06:04:53 2013 -0600] <dakota-developers@development.sandia.gov>

Sync from DAKOTA stable dated 20130808

** Git Repo: VERAInExt

b4f8c16 [Tue Sep 24 21:04:07 2013 -0400] <rks171@gmail.com>

Reblessing the xml gold file for the input file I added CTF convergence criteria

** Git Repo: DataTransferKit

9e80d98 [Mon Jul 15 10:51:55 2013 -0400] <uy7@ornl.gov>

Merge branch ’github-dev’

** Git Repo: COBRA-TF

ead9db0 [Wed Sep 25 20:07:35 2013 -0400] <sankaranr@ornl.gov>

Adding a clad_tmp_sect variable for transferring sector wise clad temperatures

** Git Repo: SCALE

6dab14f [Tue Sep 24 20:57:25 2013 -0400] <clarnokt@ornl.gov>

changeset: 9677:7cb0277be232 tag: tip user: Doro Wiarda <dw8@or

** Git Repo: SCALE/Exnihilo

02a43bf [Tue Sep 24 20:50:04 2013 -0400] <clarnokt@ornl.gov>

Merge remote branch ’angmar/master’

** Git Repo: MPACT

3676968 [Mon Sep 23 00:18:27 2013 -0400] <sgstim@umich.edu>

updated the two-node NEM/SANM sweeper

** Git Repo: MOOSEExt

dfa90ec [Fri Sep 13 13:47:38 2013 -0400] <bartlettra@ornl.gov>

Protecting test correctly with if statement.

** Git Repo: MOOSEExt/MOOSE

f3d3b42 [Wed Jul 31 17:22:49 2013 -0400] <bartlettra@ornl.gov>

Adding missing std:: (Trilnos #5945)

** Git Repo: LIMEExt

f9d8bcc [Thu Sep 19 00:11:42 2013 -0400] <rhoope@sandia.gov>

Revert "Update LIME dependence on TriKota. This is an odd way to do it, but cur

** Git Repo: PSSDriversExt

35d59b0 [Wed Sep 25 20:12:35 2013 -0400] <sankaranr@ornl.gov>

Use the clad temperature instead of the coolant temperature as the BC for Mamba

18

Before updating to a specific version of VERA, a CASL representative will
provide the customer a specific VERARepoVersion.txt file, for example VER-
ARepoVersion.<newdate>.txt, which the customer can use to checkout that
specific version with:

$ cd <SOME-BASE-DIR>/VERA.base/VERA

$ egdist fetch

$ egdist --dist-version-file=~/VERARepoVersion.<newdate>.txt \

checkout _VERSION_

(see egdist --help for more details.)
This will create a “detached head” state for the local VERA git repos where

each repo will be at the exact commit listed in the VERARepoFileVersion.<newdate>.txt
file. Here is the message that you might get from each of the repos:

Note: checking out ’00149f1’.

You are in ’detached HEAD’ state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at 00149f1... Merge remote branch ’origin/master’ into rsicc_2013_tarball_refactor_3104

This is not a troublesome state for the purposes of just building the source.
Also, using the VERARepoVersion.txt file for a previous install, one can

see what repos have been changed and what commits have been added. For
example, to compare to an older install in:

${VERA_DEV_ENV_BASE}/vera/<olddate>/

one could compare to the new recommended version by running:

$ egdist fetch

$ egdist \

--dist-version-file=~/VERARepoVersion.<newdate>.txt \

--dist-version-file2=${VERA_DEV_ENV_BASE}/vera/<olddate>/VERARepoVersion.txt \

diff _VERSION_ ^_VERSION2_

Many other types of git commands are possible where one or two of the repo
versions can be supplied through a VERARepoVersion.txt file.

NOTE: If working from an untarred (release) tarball, no extra clones are
necessary.

6.4 Set Up Build Directory

Once all of the VERA git repositories have been cloned (or are already there
in the untarred soruce), one can set up a build directory to configure and build
the code in. According to Local directory structure, the build directory can be
set up as:

19

$ cd <SOME-BASE-DIR>/VERA.base

$ mkdir BUILDS

$ cd BUILDS

$ mkdir GCC-4.6.1

$ cd GCC-4.6.1

$ mkdir MPI_RELEASE

$ cd MPI_RELEASE

6.5 Set Up do-configure Script

To get started setting up a configure script, one can copy a default configure
script for the standard gcc-4.6.1 configuration. For example, one can grab a
standard configuration using:

$ cd <SOME-BASE-DIR>/VERA.base/BUILDS/GCC-4.6.1/MPI_RELEASE

$ ln -s ../../../VERA/cmake/std/gcc-4.6.1/do-configure.MPI_RELEASE_SHARED \

do-configure

6.6 Run Basic Build And Test

Using the do-configure script created above, configure, build, and test with,
for example:

$ cd <SOME-BASE-DIR>/VERA.base/BUILDS/GCC-4.6.1/MPI_RELEASE

$./do-configure \

-DVERA_ENABLE_CTeuchos=ON \

-DVERA_ENABLE_ForTeuchos=ON \

-DVERA_ENABLE_VERAIn=ON \

-DVERA_ENABLE_DataTransferKit=ON \

-DVERA_ENABLE_MPACT_libs=ON \

-DVERA_ENABLE_Insilico=ON \

-DVERA_ENABLE_COBRA_TF=ON \

-DVERA_ENABLE_VRIPSS=ON \

&> configure.out

$ make -j8 &> make.out

$ ctest -j8 &> ctest.out

NOTE: This will enabled many VERA packages but the tests and examples
for only the explicitly enabled packages shown above will be turned on. For
more details, see the VERA Build Quick Reference.

NOTE: If not configuring from scratch, it is advisable to first delete the
existing CMakeCache.txt file and CMakeFiles/ directory first as:

$ cd <SOME-BASE-DIR>/VERA.base/BUILDS/GCC-4.6.1/MPI_RELEASE

$ rm -r CMake*

$./do-configure [other options]

This will take care if problems with changing cache variables that are set to
the default and other issues like updates to the TPL locations, compilers, and

20

file:../VERABuildQuickRef.html

about anything else. However, during a repeated cycle of having to reconfigure
for simple updates to CMakeLists.txt files, one does not necessarily want to
always want to completely configure from scratch to speed up the configuration
process.

7 Finalizing VERA Dev Env Installation

Once one has finished installing the VERA prerequisites for the compilers, Open-
MPI, and other tools and a complete set of TPLs shown in Standard VERA
Dev Env Directory Structure and one is finished testing the installs by building
and testing needed VERA components, one just needs to install the VERA Dev
Env load_dev_env.sh script and do some final cleanup.

First, one can copy the default load_dev_env.sh script to ${VERA_DEV_ENV_BASE}/
and hard-code the default path as:

$ cd <SOME-BASE-DIR>/VERA.base/VERA/cmake/std/gcc-4.6.1/

$ cp load_dev_env.sh /tools/vera/gcc-4.6.1/

$ emacs -nw /tools/vera/gcc-4.6.1/load_dev_env.sh

and replace:

if ["$VERA_DEV_ENV_BASE" == ""] ; then

export VERA_DEV_ENV_BASE=<something>

fi

with just:

export VERA_DEV_ENV_BASE=/tools/vera

(or whatever directory was used for ${VERA_DEV_ENV_BASE} for this install).
Next, after all of the installs under ${VERA_DEV_ENV_BASE} are finished, then

the directory permissions should be opened up for maintenance by <some-group>
(e.g. vera-admin) and opened up for all to use the generic tools:

$ export TRIBITS_DIR=<SOME-BASE-DIR>/VERA.base/VERA/Trilinos/cmake/tribits

$ ${TRIBITS_DIR}/common_tools/setup/setup-shared-dir.sh \

${VERA_DEV_ENV_BASE}/common_tools <some-group>

$ ${TRIBITS_DIR}/common_tools/setup/setup-shared-dir.sh \

${VERA_DEV_ENV_BASE}/gcc-4.6.1 <some-group>

That should allow anyone in <some-group> to read/write any of the installed
files and directories but let anyone on the system read the installed files (but
not modify them and mess them up).

WARNING: This will only change the owning group. This will not change
the owning user. Most Linux systems will not allow a regular user to change
the owning user. To change the owning user to avoid accidental modifications
by the original installer, run the following command:

$ sudo chown -R <some-other-user> <some-dir>

for example:

21

$ sudo chown -R root ${VERA_DEV_ENV_BASE}/common_tools

$ sudo chown -R root ${VERA_DEV_ENV_BASE}/gcc-4.6.1

This will avoid problems with accidental modifications to the installed di-
rectories without sudo, for example.

As an optional final step, to clean up disk space, one can delete the scratch
space and TPLs source repo by doing:

$ cd <SOME-BASE-DIR>

$ rm -rf vera_tpls

$ rm -rf scratch

WARNING: One should only remove these directories after one is sure that
the VERA dev env is correctly installed and that the necessary dependent VERA
components are building and running correctly (at least related to the installed
VERA dev env).

All that should be left locally would be the local VERA source and build
tree:

<SOME-BASE-DIR>/VERA.base

which can be used to clone and build VERA components using the installed
VERA Dev Env. However, if VERA will no longer be built under this directory,
then it can be removed as well with:

$ cd <SOME-BASE-DIR>

$ rm -rf VERA.base

After this, all that would left would be the install of the VERA dev env
under ${VERA_DEV_ENV_BASE}/.

After all of the the VERA Dev Env would be considered successfully installed
and now users of the dev env just need to source the script, for example:

. /tools/vera/gcc-4.6.1/load_dev_env.sh

in their .bash_profile file and they will not have to have the VERA git
repo cloned to access the standard version under version control.

8 Installing VERA

Once the VERA Dev Env is installed on a system (see Install Standard Basic
VERA Dev Env)) and loaded in the the user’s shell environment (see Load
VERA Dev Env) then anyone with access to the VERA git repositories for the
needed VERA components can clone the VERA repositories, configure, build,
and install the VERA components.

Information on the installation directory layout is found at:

VERA/doc/install/README.VERA

8.1 Get Source For VERA Components To Install

Getting the sources for the VERA components to install is identical to get-
ting them them to install and test the VERA Dev Env. See Clone minimal
bootstrap repositories and Clone remaining VERA components. Again, exactly
what VERA git repositories that need to be cloned for a given piece of VERA
functionality is not specified in this document.

22

8.2 Configure, Build, And Test VERA Components To

Install

To set up to build, test, and install various VERA components by end users,
one must first select a configuration setting. The following do-configure script
is recommended for doing an install of VERA for usage by end users:

#!/bin/bash

EXTRA_ARGS=$@

if ["$VERA_DIR" == ""] ; then

VERA_DIR=../../../VERA

fi

VERA_DIR_ABS=$(readlink -f $VERA_DIR)

echo "VERA_DIR_ABS = $VERA_DIR_ABS"

VERA_STD_GCC461=$VERA_DIR_ABS/cmake/std/gcc-4.6.1

cmake \

-D VERA_CONFIGURE_OPTIONS_FILE:FILEPATH="$VERA_STD_GCC461/mpi-release-static-options.cmake" \

-D VERA_INSTALL_LIBRARIES_AND_HEADERS:BOOL=OFF \

-D CMAKE_INSTALL_PREFIX="${VERA_DEV_ENV_BASE}/vera/‘date +%Y-%m-%d‘" \

-D VERA_ENABLE_TESTS:BOOL=ON \

-D DART_TESTING_TIMEOUT:STRING=600.00 \

$EXTRA_ARGS \

${VERA_DIR_ABS}

Here, we assume this is put in the directory:

$ cd <SOME-BASE-DIR>/VERA.base/BUILDS/GCC-4.6.1/MPI_RELEASE_INSTALL

The above configure script uses static libraries and executables and turns
off the install of the static libraries (since they are not needed by the statically
build executables). This script uses the install directory:

<install-base-dir> = ${VERA_DEV_ENV_BASE}/vera/<YYYY-MM-DD>

but any <install-base-dir> can be used.
The configure, build, and test can then be performed with, for example:

$ cd <SOME-BASE-DIR>/VERa.base/BUILDS/GCC-4.6.1/MPI_RELEASE_INSTALL

$./do-configure \

-DVERA_ENABLE_CTeuchos=ON \

-DVERA_ENABLE_ForTeuchos=ON \

-DVERA_ENABLE_VERAIn=ON \

-DVERA_ENABLE_DataTransferKit=ON \

-DVERA_ENABLE_MPACT_libs=ON \

-DVERA_ENABLE_Insilico=ON \

-DVERA_ENABLE_COBRA_TF=ON \

-DVERA_ENABLE_VRIPSS=ON \

23

&> configure.out

$ make -j8 &> make.out

$ ctest -j8 &> ctest.out

All of the tests should pass. If they do not, please send email to casl-vera-
users@casl.gov giving the tail of ctest.out and a copy of your do-configure

8.3 Install Built VERA Components

Before running make install, in order to protect VERA appropriately, one
may need to set up the base directory for the install as:

$ cd ${VERA_DEV_ENV_BASE}

$ mkdir vera

$ chgrp -R vera-users vera

$ chmod 750 vera

$ chmod g+s vera

After a successful configure, build, and test has been performed, an install
is simply performed as:

$ cd <SOME-BASE-DIR>/VERA.base/BUILDS/GCC-4.6.1/MPI_RELEASE_INSTALL

$ umask 0007

$ make -j8 install &> make.install.out

(setting umask 0007 will ensure that only the vera-users group (or what-
ever it is called on the given system

This should set up an installation directory that looks like:

<install-base-dir>/

bin/

example/

README.VERA

README.react2xml

...

8.4 Documentation For Installed VERA Components

Once installed, information on how to access the installed VERA components
along with their documentation and examples is found in:

<install-base-dir>/

README.VERA

9 Appendix

9.1 Set Up Remote SSH Tunnel

In order to access the Git repositories on casl-dev.ornl.gov when outside of
the ORNL network, a SSH tunnel must be set up through login1.ornl.gov. This
requires the user to have an active UCAMS account with the 3-char <ucams-id>.

24

mailto:casl-vera-users@casl.gov
mailto:casl-vera-users@casl.gov

Once established, this SSH tunnel will set up a machine name called casl-dev

on the local machine that can then be used in Git commands.
In one’s home directory, create the file:

~/.ssh/config

which contains:

host tunnelinit

Hostname login1.ornl.gov

User <ucams-id>

LocalForward 28881 casl-dev.ornl.gov:22

LocalForward 28882 u233.ornl.gov:22

Host casl-dev

HostKeyAlias casl-dev.ornl.gov

Hostname localhost

Port 28881

User <ucams-id>

Host u233

HostKeyAlias u233.ornl.gov

Hostname localhost

Port 28882

User <ucams-id>

Please make sure to change the above port numbers to not conflict with
other ports being used on the system or other SSH tunnels. If multiple users
use the same port numbers there will be collisions, or the host machine will
disallow the connection altogether.

To set up the SSH tunnel, in any terminal, type:

$ ssh -fN tunnelinit

You will be prompted for a PASSCODE, this is your pin+6digits from RSA
token). This will return to the command-line prompt and then one can then
open a SSH connection to casl-dev as:

$ ssh casl-dev

(which will require the user to type in their UCAMS password).
After the tunnel is established, once can set up their SSH public/private

keys and copy the public key over to casl-dev as described in SSH setup for
accessing casl-dev. Once the public SSH key is copied over and one can SSH to
casl-dev without a password challenge, then this is confirmation that the SSH
tunnel has been correctly established.

The SSH tunnel will stay open for some amount of time, longer if it is being
actively used. However, it may be important in some cases to ensure that the
tunnel is closed before logging off or doing other tasks. If a user creates a SSH
tunnel, the user should be able to close the SSH tunnel. Since the SSH tunnel
is in the background the user should use the following command to find the ssh
tunnel process.:

25

$ ps aux | egrep ssh -fN tunnelinit

then issue the kill command to end the process and close the tunnel. This
will return something along the lines of:

<ucams-id> 10535 0.3 0.0 66032 3804 ? Ss 11:08 0:19 ssh -fN tunnelinit

The user can then use the kill command to end the tunnel process:

$ kill -9 <process number>

in this case 10535, the process number will always be the second item in the
returned fields from the ps aux command.

This will close the SSH tunnel.

26

	Contents
	1 Introduction
	2 Standard VERA Dev Env Directory Structure
	3 Initial Setup
	3.1 Requesting Access to VERA Repositories
	3.2 System Configuration Considerations
	3.3 SSH Setup For Accessing casl-dev
	3.4 Minimal System Package Setup
	3.5 Create Unix Groups
	3.6 Local Directory Structure
	3.7 Skeleton Directory Setup
	3.8 Clone Minimal Bootstrap Repositories

	4 Install Standard Basic VERA Dev Env
	4.1 Standard Dev Env Script
	4.2 Install eg, egdist And Perform git Setup
	4.3 Install CMake From Source
	4.4 Install git From Source
	4.5 Install GCC From Source
	4.6 Install OpenMPI From Source
	4.7 Summary of VERA Dev Env Setup

	5 Install Standard VERA TPLs
	5.1 Set Up Base TPL Directory And Basic Variables
	5.2 Install TPLs One At A Time
	5.2.1 Install LAPACK
	5.2.2 Install Boost
	5.2.3 Install Zlib
	5.2.4 Install MOAB
	5.2.5 Install HDF5
	5.2.6 Install Hypre
	5.2.7 Install PETSC
	5.2.8 Install SILO
	5.2.9 Install QT

	5.3 Install TPLs All At Once

	6 VERA Component Build, Test, and Installation
	6.1 Load VERA Dev Env
	6.2 Clone Remaining VERA Components
	6.3 Checking Out a Specific Version of VERA
	6.4 Set Up Build Directory
	6.5 Set Up do-configure Script
	6.6 Run Basic Build And Test

	7 Finalizing VERA Dev Env Installation
	8 Installing VERA
	8.1 Get Source For VERA Components To Install
	8.2 Configure, Build, And Test VERA Components To Install
	8.3 Install Built VERA Components
	8.4 Documentation For Installed VERA Components

	9 Appendix
	9.1 Set Up Remote SSH Tunnel

